Оглавление:
- Как возникли дроби
- Появление простых дробей
- Индийские цифры
- Позиционная система и десятичные дроби
- Двоичная система: математика опять без дробей
- Алгоритм перевода обыкновенных дробей в десятичные
- Примеры перевода
Но если все знают, что 3/4 = 0,75, то запись 1/3 = 0,3333… или 1/3 = 0,(3) может вызвать недоумение у человека, отвыкшего считать без калькулятора, даже если он в свое время успешно прошел школьный курс арифметики. Так нужно ли уметь переводить дроби друг в друга? Что-то там помнится из пятого класса, это такая скука… Не такая уж и скука, между прочим, и может пригодиться. Для начала обратимся к истории.
Как возникли дроби
Впервые дроби появились в Древнем Вавилоне где-то за 2000 лет до новой эры и были шестидесятиричными: их знаменатель равнялся 60. Математикой в Вавилоне занимались жрецы, они же в своих занятиях столкнулись со случаями, когда нужно было знать соотношение чисел, друг на друга не делящихся.
Жрецы просто подобрали число, которое достаточно развитый человек еще может удержать в уме, имеющее максимальное количество простых делителей. В самом деле, 60 делится и на 2, и на 3, и на 5, и соответственно, на все кратные им числа без остатка. Знаменатель 60 вавилонских дробей был своего рода эталоном для сравнения чисел.
Но для средних умов – купцов, ремесленников, строителей – основание 60 было все же слишком большим. И плохо согласовывалось с удобным для практики счетом на пальцах рук, которых 10. Да и особых значков для цифр тогда еще не было; все действия записывались словами. Представляете? Лучше не надо.
Появление простых дробей
Следующий шаг сделали древние греки, которые свели математику к геометрическим построениям. Это было, по тем временам, очень наглядно. Развел ножки циркуля, отложил отрезок пять раз. Затем его же – семь раз. И сразу видно, какой насколько больше. Расположил отрезки параллельно на определенном расстоянии, провел прямые через их концы – видно, какой угол получился.
Современному человеку, даже специалисту, трудно представить себе такую математику, поэтому многие грандиозные сооружения и замечательные машины древности приписываются сегодня то ли инопланетянам, то ли атлантам, то ли еще кому-то, кроме тех людей, которые их на самом деле сделали.
Геометризация математики позволяла сравнивать без какого-либо выделенного эталона любые числа, делятся они друг на друга или нет. Поэтому дроби стали простыми: 3/11; 123/768 и т.п.
До поры, до времени, пока для практики не требовались очень большие и очень малые числа, простые дроби были вне конкуренции.
Индийские цифры
Революцию в математике произвели не позднее V в. н. э. индийцы, придумав отдельные значки для цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Они шли от того же счета на пальцах, поэтому и значков придумали 10, а не 12 или 60. Достаточно удобно – два простых делителя, 2 и 5 – и без труда может запомнить любой. 12 (дюжина) перед 10 не имеет преимущества, т.к. у него тоже два простых делителя: 2 и 3, а значков для записи требуется на два больше.
Не позднее VII в. индийские цифры пришли в Китай и к арабам, а от тех, в Х в. – в Европу. Поэтому у нас индийские цифры называются арабскими.
Позиционная система и десятичные дроби
Индийские цифры позволяли записывать любое, сколь угодно большое число в т. наз. позиционной системе. Каждая цифра слева от предыдущей считалась умноженной на 10. 458 = 4х10х10 + 5х10 + 8. 10 в таком случае – основание системы счисления. И оно же самым естественным образом становилось универсальным знаменателем дробей, вроде вавилонского 60, но доступным обычному уму.
Появление позиционной системы во многом способствовало прогрессу науки и техники. Геометрия циркуля и линейки тут выдохлась – ее точность была ограниченной. А математика становилась все более изощренной и оперировала все более абстрактными понятиями.
В 1617 г. английский математик Непер предложил целую (основание) и дробную (мантиссу) часть десятичной дроби разделять запятой, а знаменатель 10 не писать вовсе, раз он везде один и тот же. Теперь десятичной дробью можно было записывать и сколь угодно малые числа. А для невообразимо малых позже придумали экспоненциальную форму записи. Скажем, 7,37Е-7 будет 0,000000737. Она же оказалась удобной для отображения на дисплеях электронных устройств.
Есть ли у простых дробей будущее? Казалось бы, нет. Куда там, если даже десятичные отступают под натиском процентов. Но не так-то все просто.
Двоичная система: математика опять без дробей
Цифровые компьютеры работают в системе счисления с основанием 2 (двоичной). В ней всего две цифры – 0 и 1; включено/выключено; верно/неверно, а каждая «левая» цифра считается умноженной на 2 относительно «правой». Перевод двоичного кода в обычные десятичные числа делают специальные программы.
Кстати, в двоичной системе дробей вовсе нет, т.к. 1 на себя всегда делится с результатом тоже 1.
Развитие компьютерной техники идет по пути все большей наглядности результатов. Если в 50-х годах специалист по ЭВМ обязан был уметь читать двоичный код на перфоленте так же, как обычные цифры на бумаге, то теперь он же на цифровую распечатку может и не взглянуть – на дисплее ясно видно, в геометрических образах, как идет процесс.
Остается только удивляться гению древних греков, сразу поставивших наглядность во главу угла. Что бы они натворили, будь у них компьютеры?
Алгоритм перевода обыкновенных дробей в десятичные
Перевод обыкновенных дробей в десятичные делается последовательным делением числителя на знаменатель, затем остатка, умноженного на 10, опять на знаменатель, следующего остатка, опять умноженного на 10, снова на знаменатель, и так до тех пор, пока остатка не останется, либо не выявится период десятичной дроби, либо не будет достигнута заданная точность.
Числа, получившиеся до первого остатка, пишем до запятой; они дадут основание десятичной дроби.
Числа, получившиеся от деления остатков, умноженных на 10, пишем после запятой. Они дадут мантиссу.
Скажем сразу: не всякую простую дробь можно перевести в десятичную точно. Если знаменатель делится на 3, 7 или другое, не кратное 2 или 5, число, то получится бесконечная периодическая десятичная дробь. Период такой дроби принято брать в круглые скобки. Скажем, 2/3 = 0,(6). Либо округлять с заданной точностью, наподобие 0,6667. Период может оказаться очень длинным, тогда останавливаются на следующем, после достижения заданной точности, знаке. 2/3 с точностью в 1% будет 0,667.
Есть числа, которые невозможно выразить отношением любых целых чисел. Математики называют их иррациональными. Это всем известное ПИ – отношение длины окружности к ее диаметру, основание натурального логарифма е и другие. Такие числа записываются бесконечной непериодической десятичной дробью. Останавливаются по достижении нужной точности + один следующий знак.
Примеры перевода
Числитель больше знаменателя
Допустим, есть дробь 362/128.
- 362:128 = 2 + 106 в остатке (362 = 128х2 + 106 = 256 +106). Мантисса десятичной дроби будет равна 2, т.к. сразу же получился остаток.
- 106х10 = 1060:128 = 1060 – (128х8 = 1024) = 8 + 36 в остатке. 8 – первая цифра после запятой.
- 36х10 = 360:128 = 2 + 104 в остатке. 2 – вторая цифра после запятой.
- 1040:128 = 8 + 16 в остатке. 8 – третья цифра после запятой.
- 160:128 = 1 + 32 в остатке. 1 – четвертая цифра после запятой.
- 320:128 = 2 + 64 в остатке. 2 – пятая цифра после запятой.
- 640:128 = 5 – шестая цифра после запятой, остатка не осталось, и мы имеем 362/128 = 2,828125.
Числитель меньше знаменателя
Считаем числитель первым остатком. Сразу умножаем его на 10, и пишем ноль с запятой (0, ). Если числитель опять меньше знаменателя, считаем его вторым остатком, умножаем опять на 10 (всего 100), а после запятой дописываем еще ноль, и так далее, пока не получим числитель больше знаменателя. Тогда делим, как в примере первом.
3/8 = ?. 3х10 = 30; 30:8 = 3 + 6 в остатке; 6х10 = 60; 60:8 = 7 + 4 в остатке; 4х10 = 40; 40:8 = 5.
3/8 = 0,375.
Тогда 3/80 будет 0,0375; 3/800 = 0,00375 и т.д.
Нули после запятой до первой отличной от нуля цифры – незначащие, а первая отличная от нуля цифра после запятой и следующие за ней называются значащими. Если дописывать после последней значащей цифры нули, они значащими не будут.
Если проделать описанную процедуру для дроби, допустим, 9/14 (вспомним, 14 делится на 7), то получим 0,64285714285714285714… Числа в мантиссе …285714… будут повторяться до бесконечности; у нас получилась бесконечная периодическая десятичная дробь. Такую дробь для полной точности записывают так: 0,64(285714).
Иррациональное число при переводе обычных дробей в десятичные получиться не может, т.к. иррациональные числа отношением целых чисел не выражаются. Если мы считаем и считаем, а периода все не видно, значит, он слишком длинный и нужно остановиться на заданной точности.
Есть правило: чем больше у знаменателя простых делителей, тем длиннее окажется период. А простые делители – это делители из простых чисел, которые делятся только на самих себя и на 1. 1, 2, 3, 5, 7, 9, 11, 13, 17, 23, 29 – это все простые числа. Математики до сих пор не знают, конечно ли количество простых чисел и по каким законам они распределяются в числовом ряду.
Не правда ли, хоть и сложновато, но вовсе не так уж и скучно?